Information geometry, simulation and complexity in Gaussian random fields
نویسندگان
چکیده
منابع مشابه
Information geometry, simulation and complexity in Gaussian random fields
Random fields are useful mathematical objects in the characterization of non-deterministic complex systems. A fundamental issue in the evolution of dynamical systems is how intrinsic properties of such structures change in time. In this paper, we propose to quantify how changes in the spatial dependence structure affect the Riemannian metric tensor that equips the model’s parametric space. Defi...
متن کاملNumerical Simulation of Non-Gaussian Random Fields
The non-Gaussian random fields are used to modelling some dynamic loads generated by wind turbulence, ocean waves, earthquake ground motion etc. These fields also represent the uncertain properties of different materials (reinforced concrete, composite, soils etc.). This paper presents some methods and the corresponding algorithms to the numerical simulation of stationary non-Gaussian random fi...
متن کاملSkew-Gaussian Random Fields
Skewness is often present in a wide range of spatial prediction problems, and modeling it in the spatial context remains a challenging problem. In this study a skew-Gaussian random field is considered. The skew-Gaussian random field is constructed by using the multivariate closed skew-normal distribution, which is a generalization of the traditional normal distribution. We present an Metropolis...
متن کاملGaussian Process Random Fields
Gaussian processes have been successful in both supervised and unsupervised machine learning tasks, but their computational complexity has constrained practical applications. We introduce a new approximation for large-scale Gaussian processes, the Gaussian Process Random Field (GPRF), in which local GPs are coupled via pairwise potentials. The GPRF likelihood is a simple, tractable, and paralle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monte Carlo Methods and Applications
سال: 2016
ISSN: 0929-9629,1569-3961
DOI: 10.1515/mcma-2016-0107